
AN ALGEBRAIC REPRESENTATION FOR THE
TOPOLOGY OF MULTICOMPONENT PHASE

DIAGRAMS

Don J. Oracr

Center for Manufacturing Engineering
National Bureau of Standards

Gaithemburg, Md 20899

ABSTRACT

A new non-graphical method for representing the topology of phase diagrams is
presented. The method exploits the fact that the topological relations between the
variously dimensioned equilibria making up the structure of a phase diagram may be
treated as a special type of algebraic structure, called an incidence lattice. Correspond -
ing to each topologically distinct phase diagram there is a finite incidence lattice whose
elements correspond to the invariant (vertices), monovariant (edges), bivariant (sur-
faces), etc., transition equilibria of the diagram, and whose operations correspond to
moving between these topological elements in a systematic way. Further, we have
discovered a method of modeling a given incidence lattice by a family of sets. In this
incidence calculus, as we call such a family of sets, the two operations for the incidence
lattice are modeled by set intersections. This defines a "calculus " of phase diagram
equilibria specific to that diagram and provides an efficient method for a computer to
store and subsequently retrieve the topological relationships between an equilibrium
and the rest of the diagram or between any two equilibria. A remarkable mathematical
fact is that the incidence calculus may be generated from certain subsets of itself. This
is reflective of the fact that knowing a "sufticient " portion of the topology uniquely
determines the remainder. An algorithm exploiting this fact, based on knowing just
which n-dimensional phase fields of an n-ary phase diagram are incident on each vertex
(point with zero degrees of freedom), is described. Hence, the higher the dimensionality
of the diagram, the higher the return from the algorithm. The application of the
incidence calculus to a multicomponent data base and its potential for qualitative ther-
modynamic modeling are discussed.
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1. INTRODUCTION
A phase diagram[l,2] is usually communicated as a pictorial object (figures 5,6 and 8) among

human viewers. Presented with such a diagram, a trained human must interpret what he 8ees in order
to make the information contained in the figure explicit within his mind. This procm of visual interpre-
tation as performed by a human viewer is not well understood[3] and subsequently not very well emu-
lated by computer. However, the information contained in a phase. diagram exists independently of an
implicit graphical rendering and for purposes of computer representation, in support of a computerized
data base, invites explicit rep n ~ ~ t ~ ~ ~ swhich do not require this interpretive atep.

In this paper we are concerned with the computer representation of tbe topological structures
inherent in (primarily, temperature -composition) phase diagrams. We advocate the view that these
structures must be explicitly represented in the computer in order to easily answer queries regarding
phsse adjacencies, and present one method of doing so. We will not be concerned with thermodynamic
modeling as such, but rather with the reDreFOntation mathematiq useful in understanding how to store
the results of such modeling in the computer.

The practical representational problems motivating these ideas are:

(1) Entrv Problem: How to enter into the computer higher dimensional phase diagrams.

(2) Subsvstem Problem; How to utilize lower order phase diagrams in support of bigher order systems
within a computerized data base.

(3) Fauilibria Adiacency Problem: How to represent the invariant (paint), monovariant (boundary),
bivariant (surface) etc. transition equilibria in a manner which  allow^ questions concerning their
adjacency relationships to be easily answered by computer.

The results we have obtained are due to separating the geometry of a phase. diagram into two
types of information: the topological and the metricalI4,5], and the realization that the fopological infor-
mation, from a computer representation point of view, is dominant over the metrical, i.e., the metrical
information is viewed as attributes of the topological elements. Thus a vertex, a topological object,
becomes a geometric point when ita temperature -composition coordinate is assigned i.e., the assigning of
a metric attribute. In an analogous way edges and faces may be turned into boundaries and surfaces. In
this paper we describe a representation for the topological structures making up a phase diagram and for
the relations existing between a phase diagram and its subsyefems.

Without defining precisely how we distinguish between topological and metrical information, we
will use the term f-cauilibria , j =0,1,2, - * * , to refer to any equilibrium interface having f degrees of
freedom. While not precisely true of all topological elements making up a phase diagram (e.g., a binary
eutectic tie-line is not a true /-equilibria), we wil l for the moment use the term vertex for invariant
equilibria (@degrees of freedom), edge for monovariant equilibria (l-degree of freedom), face for bivari -
ant equilibria (2-degrees of freedom) etc., and refer to them in general I L ~j-eguili6ria

2. PHASE DIAGRAM REPRESENTATION PROBLEM
Consider the problem of entering and representing within the computer a phase diagram such as

the ternary diagram depicted at the top of figure 1, in such a way as to facilitate the answering by com-
puter, questions of the following type:
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(1) For a given surface, what are its edges?

(2) For a given surface, what volume(s) does it bound?

(3) Given two surfaces, which common volume, if any, is bounded by both?
(4) Given two surfaces, which edges and/or vertices, i f any, do they have in common?

(5) Questions (1) - (4) restricted to the binary subsystems.

These questions, asked of a human viewer are easily answered through the process of visual
interpretation, but not as easily answered by computer.

I f metrical information for individual f-equilibria, i.e., phase boundary points, are stored in the
computer, then the diagram can be reproduced graphically. However, the information that two 1-
equilibria meet at a eutectic in a binary, for example, is not explicitly known (unless a calculation is per-
formed), and exists only in the mind of the human interpreter 85 he views the graphical rendering.

One solution is to store tables in the computer containing the precomputed answers and s u b
quently look up the explicit relationships between a /-equilibria and the remaining diagram or between
any two f-equili6ria Such tables are called incidence matricesIS], and for the ternary of figure 1, charac-
terize the topological relationships between the (for this example) 70 distinct volumes, surfaces, edges
and vertices. A disadvantage of this method lies in the amount of work required to generate such tables,
and the space required to store them.

We present here an alternative to the above method in the form of a finite mathematical lattice,
or lattice algebral61, specific to the topology of the transition equilibria of a given wary phase diagram.
The lattice contains as many elements as there are topological elements in the phase diagram. Questions
of type (1) - (4) are readily answerable by applying the operations of the lattice to the elements in ques-
tion, mapping them to the elemenqs) constituting the answer. Furthermore, we have discovered a sim-
ple algorithm for automatically generating the elements of this lattice from information which is readily
obtained by visual inspection of a rough drawing or potentially from thermodynamic modeling.

3. TOPOLOGICAL, DECOMPOSITION OF A PHASE DIAGRAM
Below the ternary of figure 1 we have depicted its topological decomposition into a hierarchy of

volumes, surfaces, edges and vertices. (Only a small subset is actually depicted and the L +a+P phase
field is l e f t out entirely to simplify the figure.) The relationships asked for by questions (1) - (5) are
implicitly represented in this decomposition by the lines connecting the various topological elements and
may be easily read OB the figure. The trick is to get such a decomposition figure! into the computer in a
simple way.

To be more precise, we introduce some notation denoting the relations between the topological
structures u-equilibria) in the topological decomposition of a phase diagram.

An edge c is said to be a pubstructure of the surface 8 which it (partially) bounds. This relation -
ship is indicated by e <s and is read " e is a substructure of 8 ". Conversely, 8 i s a puDrastructure of
e , and this is indicated by 8 >e . Io figure 1, the lines connect just those elements which have this rela-
tionship. Questions of type (1) and (2) above are then a matter of finding all elements t which, for a
given surface a , satisfy z <a and 8 <t respectively.

For two distinct surfaces 8 1 and 8 2 and a volume u, in case both 8 l < U and 82<U, we say v is
the j p i ~of 81 and 8 2 and indicate this by 8,782 = u. Hence, questions of type (3) are a matter of
finding, for the given surfaces 81 and 82, an z such that 8 l < t and s 2 < t .

Similiarly, for surfaces and 8 2 and an edge c , in case e <sl and e <82, we say e is the&
of 8 and 8 2 and indicate this by 8 1 8 2 = e . Questions of type (4) are then answered by finding an z
such that z < 8I and z <82 for the two given surfaces a and a 2.

Figure 1 is then a graphical depiction of the /-equilibria decomposed into their topological elements
in which the substructure relation < is indicated by lines extending down from an element to its sub
structure elements. In addition, the join t and meet 1 are indicated when two elements have a common
suprsstructure or substructure respectively.

The explicit representation of the relationships between the topological elements of a phase
diagram may be encoded as a list data structure[l], but this still requires that it all be generated in
some way. An alternative to such an encoding, we are suggesting, is a lattice.modeling the structural
relationships between the f-equilibria In this paper we describe such a lattice, in which the join t and
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Figure 1I The topological decomposition of a simple ternary. Only the a+ f3 phase field is decomposed and
theL.+a + f3 is left out entirely to simphfy the figure. The actualdecomposition contains 70 topological elements.
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meet 1 are implemented by set operations acting on elements of the lattice. Further, we describe a
method for computing all the elements of the lattice for a n-ary phase diagram from a knowledge of just
the substructure < relationship between the Ocqulibria and the n-equilibria

In order to differentiate between j-equilibria and the topological structures representing them in a
phase diagram, we introduce the term k-face to refer to a topological element of dimension k . Hence 0-
faces are vertices, I-/aees edges, 2-faccs surfaces and $-faces volumes. We will use i-face, j-face, k-
face, * * t o refer to topological elements of dimension i,j,k , * * . By referring to a given topological
element as a k-face, we emphasize its topological dimension A, while referring to it as an f-equilibrium,
we empasize i t s associated degrees of freedom f . Note that for a fixed f-equilibrium, referred to also BS

a k-face, f S k , and in particuliar, for a binary eutectic tieline, for example, f=O< l=k .
Using this notation we may summarize the above definitions for the substructure relation and the

join and meet operations between the topological elements representing the f-equilibria of a wary phase
diagram, generalized to k-faces and also allowing a k-face to be a substructure of itself,Oli,j,k 5n
by:

i<j
i-face j-face if and only i f i-face is aIj-face is a

h M , , 1
k-jaecz i-face

i-face j-face = k-face if and only if k-faecr j-jaccI

rubstructure of j-face
suprostrueturc of i-face

l k is minirnum(e1ement of lowest dimenuion)

(kSmin(i, j)
)-face< i-face

i-face 1 j-face = k-face i f and only if k-facc~j -faecIIk is mcrzirnum (clement of highest dimension )

4. ANEXAMPLE LATTICE CALCULUS
In order to simplify the presentation given here, we will exemplify our ideas in terms of a much

simpler "phase diagram", namely the one shown in figure 2, which we shall refer fo as P[A,B,C]. We
write it this way to emphasize that three 01the faces of the ternary prism are the binary subsytems
P[A,B], P[B,C] and P[C,A]. There are two volumes (the interior of the figure and the exterior), five
faces, nine edges and six vertices, making a total of 22 k-faccs,k =0,1,2,3, which agrees with Eulers well
known identity[8] vertices -edges +jaecu-uofumcs =6-9+5-2-0.

We enumerate the lattice elements of the proposed lattice for representing P[A,B,C] in table I,
under the column labeled "Incidence Set". Their individual identification with the k-faces of P[A,B,C)
are enumerated in the third column, while the first column name will be used in the text. For the
moment, ignore column four.

Each lattice element consists of a set of labels taken from the set {A-B,BC,CA, -B,-L,Q}, which
we wil l refer to as the label set for P[A,B,C]. The label set is generated by assigning a unique label to
each "region" incident on an exterior face of P[A,B,C], 80 that A-B,BC,CA are the binary subsystem
labels, and -B and -L are the bottom and liquidus face labels. {The digits 1,2,3, * * - would serve aa well,
but we will use labels which have a mnemonic value.) An ia added for each interior
phase field. In the case of P[A,B,C], there is only one, which we have labeled a. The "-", when used in a
label, mnemonically indicates an exterior face label, aa opposed to an interior phase field, where conven-
tional phase ficld labels will be used.

Each lattice element, or incidence g& 88 we shall refer to them, may be thought of in the following
way: For the topological element it corresponds to, it is the set of labels corresponding to the volumes
(n-/aces for a n-ary phase diagram), which are incident to (i.e., touch) that element. For example the
"regions" labeled A-B,-B, and Q are all incident on the edge e,? and hence the lattice element
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.

(6) Vertices

(1)Exterior Volume

Figure 2. The topological decomposition of the ternary coordinate she1 P [A,B. C], or “prism”. The
connectivity of the vertices, edges and faces are modeled by the incidence sets of tableI,and is isomorphic
to the graphically depicted lattice of figure 3.
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corresponding to c 12 is {A-B,-B,a). A face (&face) separates two volumes, and hence the incidence set
corresponding to a face will always contain the two labels of the volumes to either side. (The same is
true of edges in a binary diagram, and in generaf lor the (n-I)-/acca of a n-ary diagram.)

I INCIDENCE LATTICE FOR PIA.B.Cl 1

TABLE 1

The entire collection of 22 incidence sets constituting the lattice for P[A,B,C] will be denoted by
TpIA ,B,CI. This set TpIA ,B,c] implicitly contains all the topological information about P(A,B,C]. Furth-
ermore, there are simple operations on the incidence seta which allow one to determine if the substruo
ture relation holds and to compute the join and meet operations for a given i-$aee and j-jaee, i.e., calcu-
late the answers to questions of type (1)-(4).

We will use the notation "name '" to refer to the incidence set associated with "name", e.g., j:23

= {-B,a}.
The substructure relation < is calculated by

&face < j-jace if and only i f i- jace' 3 j- jacc*

That is, i-face is a substructure of j - j acc if and only i f j - jacc* is a subset of i- jaec*, Hence to
answer questions of type (I),the determination of the substructures of a given i-face, we find all
incidence sets of TplA , B , ~ Jwhich contain the incidence set i-jacc' BS a subset.

For example, the edges and vertices of face $123, are found by finding all the sets a (except E,
whose role wil l become clear in a moment) of T ~ I ~ , B , C Isuch that j;23 is a subset of 8. These sets are
ci2 ,e ,'3 ,e.& ,u; ,u; , v i , and are the incidence sets for the k-jaccs of lower dimensionality contained
within f 123. The edges contained in this set are easily identifiable, e.g., in this example all edges have
three elements in their corresponding e,*. Note that only elements of dimensionality lower than that of
f 123 need be searched. A similar process answera questions of type (2) except we must search for subsets
instead of supersets.
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In general, questions of type (1) and (2) may be rephrased as:

(1) For a given k-jam, which j-faceu, j<k, does it contain?

(2) For a given k-jacc, which j-jaccu, j>A, contain it?

We call (1) and (2) the substructure and suprastructure questioq, and use the notation

SUB(k-face* ) E (j-face' ETp ,B,cb-jaec* 3k-jaec' }

SUP (k-facc' ) o'- f4CC' ETp /A,B ,cfi-faCC* Ck-jaCe* }

to denote the set of j-faces strictly contained in and containing the given k-jaec. They are both easily
answered by searching the lattice elements for the sets containing or contained in the incidence set for
the given k-jaec.

Questions of type (3) and (4) utilize two given elements and hence may be regarded as binary
operators on TplA ,B,c~. Type (3) questions correspond to the join operator and are calculated by

i- jace j-jace = k-jacc i f and only if k-jacc* 3: i-jacc' n j-ja.ce*

That is, the incidence set of the element corresponding to the join is found by taking the intersec-
tion (the set containing elements common to both ) of the two incidence sets corresponding to the given
i-face and j-jacc.

For example, to find out which face of lowest dimensionality contains both the edges c12 and el3,
we compute the intersection of and and obtain j;n, the common face. For edges c12 and ea,
their intersection is {a}=u', the volume containing both, since they do not have a common face. Type
(3) questions may be generalized to:

(3) Given an i-face and a j-jacc, which k-jacc, k>rnat(i,j),of lowesf dimensionality, contains them
both?
We denote this question and the multing value by:

JOIN(i -jaec*j -jace*) 5 i-jacc*flj - facc'

The solution to type (4) questions is more complex. It is calculated by:

In words, we must find the substructure incidence sets common to both the given i-jaec' and j-
jacc' , (a set of sets), and then calculate the set of elements common to all these eets. The resulting set
is the incidence set corresponding to the desired k-jwc. Note that this is equivalent to finding the JOIN
of all the substructures common to i-face and j-face.

For example, to find the element of highest dimensionality common to both j;245 and f ;56, we
first find all supersets containing both j f2(5 and f &a. Note that this is equivalent to finding the inter-
section of SUB( f ,,,)*and SUB( j The reault is {E*,C;~ }. We next take the intersection(which is
equivalent to JOIN(a ,c i s ), of these sets which yields e & , i.e., edge elS which is common to both. As
a further example, we calculate the edge common to j and j The first step yields {E'), and
since the intersection of a singleton is that singlcton, the second step yields 5'. The interpretation of
this result is that there is no k-jacc (edge or vertex) shared by f 123 and j The role of the incidence
set E' is to deny the existence of tentatively hypothesized k-jaecs.

Type (4) questions may be generalized to:

both? (If it does not exist, 80 indicate).
(4) Given an i-face and a j-face, which k-face, A <mita(i,j), of highest dimensionality is contained in

W e denote this question and the resulting value by:

MEET(i -facc',j -jacc') = JOIN(u,, * - * ,E,,,), u,ESUB(i -jacc*) n SUB(j -jaec')

By combining the two relations SUB and SUP and the binary operators JOIN and MEET to create
expressions, complex questions concerning the topological relationships among the equilibria may be



Algebraic Representation of Phase Diagrams - 6 -

easily stated and efficiently answered by the corresponding incidence sets. For example, a (binary)
eutectic i s searched for by finding phases a, B, and L and incidence sets L *, (Q+L )', (P+L )' and
(a+B)', such that their joint meet is a &/ace, Le., the eutectic.

Questions of type (5) relate to sublattices of ,~,cl,namely one for each of the binary system
faces: TA-B, Tsc and TC.A, and are easily found, since the incidence seta for each contain the binary
system tag, e.g., A-B. The set TpIA,B,C] may be built from TA.& Tsc and Tc A and knowledge of
additional 3-dimensional k-jaees. This will not be developed at this point other than to indicate that the
relationships between the constituant (n-1)ary subsystems and the resulting n-ary system are naturally
reflected in the lattice corresponding to the n-ary system.

6. WHERE DID THE LATTICE ELEMENTS Tpp ,B,c~COME FROM?
The mathematical relationships existing between the /-equilibria, as we have described them in the

preceding sections, are a special type of mathematical lattice[f3], or in the case of a n-dimensional
polytope complex for which n-ary phase diagrams are an example, a polytope face (incidence) Iattice[9].

Up to this point we have used the term incidence lattice to refer ambiguously to both the abstract
mathematical relationships existing between the topological elements (i.e., k-jaecs denoting the j-
equilibria of a phase diagram), and the collection of incidence sets which "implement " it. In 191, refer-
ence is made to the former. To our knowledge, the existence of the incidence sets modeling the incidence
lattice has not been previously known. Therefore, we make the following distinction. For a given phase
diagram P, the collection of incidence sets modeling the abstract incidence bttice, we shdl refer to as
the incidence calculus , and denote this latter by Tp.

Hence, the abstract mathematical relations denoted by the substructure relation <, join and
meet 1 are properly part of the incidence lattice, while the operations of SUB, SUP, JOIN and MEET
are part of the incidence calculus, and operate on incidence sets. The incidence calculus, TpIA,B,c],
because it models a mathematical lattice, has the propertiea of a lattice, and hence can be depicted in
the form of a directed graph[6], called a Haase diagram, as in figure 3. Note that ita structure is identical
to the substructure relations exhibited by figure 2.

A remarkable mathematical fact is that the incidence lattice is an atomic lattice and as a result,
the w, 's are generators for all the remaining elements of the incidence calculus. We have discovered a
practical algorithm for accomplishing this which we have implemented, and have used it to compute the
calculus associated with a number of binary, ternary and quaternary phase diagram topologies.

Assume we have been given a set of vertex incidence sets ui: i=1,2, * * - ,u. The algorithm may
best be understood by first thinking about a naive version which enurneratea all combinations of
{u;,u;, ...,ww9, from u at a time down to 0 at a time. The intersection of each combination is found,
and for a particular intersection value, that value and the largest set of u,"s giving that value are the
incidence set and maximal vertex set respectively, mmciated with a unique element of the topological
decomposition. For the prism of figure 2, whose incidence calculus is given in tableI,column four lists
the corresponding maximal vertex set. In eflect, we are generating the closure under intersection for the
given set of u,%. The algorithm is based on the following recursive definition in which the set of combi-
nations are defined in terms of lower order combinations.

Let (uI,u2, - - - ,u,, Ii]denote the set of combinations of u vertices takeni at a time, and l e t * be
the operation of distributive union defined on a singleton {u } and a set of sets S, by:

This i s depicted in figure 4 for the ternary prism of figure 2, where the ui
hs in all combinations are

listed with [ul ru~, * I 61 at the top, [uI,uz, * - * ,V& 15) below, down to (ul,uz, * * ,u6 IO) at the
bottom. Combinations of vertices resulting in maximal intersection values are marked with asterisks.



i

(C-A,A-B,-&a) (A-B,&C,-B,cr} {B-C,CA,-B,a) {CA,A-B,-&o} (A-&WC,-t,a) {B-C,C-A,-L,Q)

(C-A, A-8,B-C,-8,-L,a)

Figure 8. The 22 incidence nets companding to the interior volume (at top d figure), 3 faces, 9 cdgcs,
6 vertices and exterior volume (bottom), lo t the ternary prism of figun 2, in which the substructure,
suprastructure, meet and join are modeled by &helinea connecting them.
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Figure 4. Thc Hasse diagram for the 64 combinations o l six vertices taken i at a time listed by de-
creasing i from 6 ta 0 lrom tap to bottom. The intersections d the 22 elemenb with rsterisks
correspond to the incidence sets for the 6 verticee, 9 edges, 5lacesand interior and exterior volumm lor
the ternary prism of figure 0. (Linea, indicating the suubset relation, have bee0 drawn for just the l e f t
most combinations, in order to simplify tbe figure.)
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I

Finding all maximal vertex sets in this manner wi l l require that x(7 ) = 2” combinationst be

tested and hence it wil l be computationally too expensive to compute the incidence sets for a very corn-
plex phase diagram. However, the above computation may be modified slightly 80 as to reduce the aver-
age computational complexity from being exponentid in u to polynomial in u. This modification and
subsequent reduction in computation stems from two observations: (a) I f the intersection of a combina -
tion is empty, then all combinations which contain that combination as a subset wil l also be empty and
need not be generated, and (b), any subcombination contained in a (known) maximal combination whose
value is the same as the maximal one need not be generated. (a) in fact, is a special case of (b).

i=O

The u,”s are initially obtained by applying the following steps to a n-sry phase diagram:

(1) Uniquely label the O-jaees (vertices) and highest dimensional n-jams (volumes for n=3).

(2) For each u,, u,’ i s the eet of n-jace labels incident on vi.

Step 1 above requim labeling the exterior volume in a manner which uniquely characterizes each
face. This is easily pcrformed. As a check to insure that the given u,’ describe a topologically consistant
figure, the generalized Euler identity, i.e., Schlaefli identity[l I8j may be applied to the resulting i-jueeu*.
Let #(i-face) denote the number of distinct i-jaccs of dimension i,in a n-dimensional n-ary phase
diagram. Then this identity requires that

nx #(i-jaceX-l)’ = 1+(-1)”

and reduces to the respective 2 and 3 dimensional Euler identities ucrtiecr -edges + j a c e ~ 2 and
vertices -edges +jacct~-uo~urncs=0, for n=2 and 3.

A mathematical lattice[6] must contain two special elementa, the greatest lower bound(GLB) and
the least upper bound(LUl3). These two elements are such that for all elements t in the lattice,
CLB <t and t <LUB, Le., they are respectively a suprastructure and substructure of every other ele-
ment, and hence CLBlz=CLB and LUBIt=LUB. In the case of Tp(A,B,C), 5’ served as the GLB
and a’ as the LUB. In general, and more to the point, real phase diagrams will contain interior k-jams

the LUB must correspond, not to a single n-cqus M in TplA ,B,CI, but to the entire ly or
complex of j-equilibria. It turns out that within the incidence calculus, the empty set {Imodelpl the
desired behavior of the LUB of the lattice. Hence if the join of two elements maps to the empty set, the
interpretation is that they have only the full diagram complex in common. Note that the LUB is not a
true i-face and is not to be counted in the Schlaefli identity.

The incidence calculus GLB is in general analogous to the incidence set for Ti of Tp(A,B,C]: i t con-
sists of all labels assigned to the interior n-equilibria (n-jaees) plus the labels assigned to the n+2
regions the exterior of the diagram must be divided into. The n +2 regions and their respective labels
correspond to the n eubsytem faces and the upper and lower temperature truncations.

In figure 5 we depict the binary eutectic system cadmium -zinc[ll] with the vertices labeled
u, , i=1,2, - ,11. The interior Gcquifibrio (phase fields) have been labeled, but in addition, the region
exterior to the border has been broken up into four regions by diagonal lines extending out from the
four corners of the diagram. It is convienent at this point to think of the phase diagram as being drawn
on the front of a balloon, BO that the extension of these diagonals meet at a vertex at the back of the
balloon, and hence divide the region exterior lo the phase diagram into four regions, or 2-jace1, covering
the back of the balloon. These four regions correspond to the border resulting from the two unary s u b
systems and the two temperature truncations, and hence are labeled -Cd,-Zn and -Top,-Bose respec-
tively. The incorporation of ”-* in a label, while not needed by the algorithm, indicatea that these are
exterior labels, in the same way that r ”+” signs in a phase field label indicate that there are r +1
phases present.

Id

or j-equilibria, so that we may think of B m- ary ph iagm as a complex of n-equilibria c-1

Although we have not done SO,the twelfth vertex at the rear of the balloon, whose incidence set is
(-Cd,-Zn,-Top,-bwe }, could be added to the other eleven so that the incidence calculus would
account for the entire surface of the balloon, including the exterior facea and their mutual borders.

We use the notation ( ) to den09 the number of combinations 01u things taken i at a
v :

time, whose value is given by
i!(u -i)!
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Table 11 lists the incidence sets which model the topology or "incidences " of the P[Cd,ZnJ system
as depicted in figure 5. (Without the twelfth vertex.) The incidence sets corresponding to the 11
vertices(&=O), 16 edgcs(k=l) and 7 faces(k=2) are enumerated, as well as the maximal set of
vertices(Vertex Set) whose intersection yields that incidence sct. The GLB and LUB are given, but note
that only the CLB must be counted as a Z-face, in the identity 11-16+7=2.

The incidence set u,* corresponding to the u, may be read directly off figure 5. For example, uI is
located at the junction of phase fields a, L +a and a+B and hence all three are incident on u, so that
u ={cl,L +a,a+P}. Once these u,"a have been determined, the remaining faces and edges may be alge
rithmically generated from them.

In the fourth column of table Iwe have listed for each incidence set, the (unique) maximal eet of
vertices whose intersection yields that incidence set (as described above). But in fact, these vertex sets
are a second "dual" incidence calculus which models the inverted mathematical lattice, or dual
space[4,8], in which the role of vertices and faces is i n ~ r c h a n g ~ .For example, the topological dual for
the prism of figure 2 is obtained by mapping the 8 vertices, 9 edges and 5 faces to a polyhedra contain-
ing 6 faces, 9 edges and 5 verticea, respectively, while simultaneosly reversing the sense of the substruo
ture c relation. The resulting polyhedra is a "double pyramid", obtained from a triangular baae, with
an "apex- vertex to either side of this face joined to each of the vertices of the base. The incidence cal-
culus for this dual has the same structure as that of figure 3, but inverted, i.e., figure 3 turned upside
down so that what were the vertices at the bottom, become the faces at the top, and the incidence sets
replaced by their respective maximal vertex sets.

The operation of taking the dual is well defined for polytope "shells", such as the prism, but since
a phase diagram contains structure internal to its border, or shell, its topological dual is more easily
visualized by thinking of it again as being drawn on the surface of a (n+ltdimensiond sphere, where it
may be subsequently thought of as a (n+l)-dimensional polytope in which the phase fields become the
facets of the polytope. For example, the topological dual for a binary (n =2) phase diagram is obtained
by treating it 88 graph drawn on a sphere where its graph dual[l9] i s generated. This dual is obtained by
treating the phase field labels as the new vertices (graph nodes), and then connecting thcee vertices by
edges whose corresponding phase fields were adjoining one another in the original diagratn. More gen-
erally, in an n-ary phase diagram, the geometric rule of the (n-k]-fa6cs and the k-jacea, b ==0,1, s * - ,n ,
are interchanged in the dual,7while simultaneoudy interch e Iwbstructure/suprastructure rela-
tion. More precisely, le t k-face denote the (n-it)-I.te dual d &-.kc. Then for a maximal vertex set
%,vVazv ' ' ' ,u,,, k=0,1,2, * - ,n , -

&-face* = u,: nu,; n - * - nui: if and only if k-face. = {w,,,ui2, - - - , q }

Hence, the algorithm we have described for computing the incidence calculus for a given phase
diagram automatically genera& the incidence calculus for its dual, in the form of the eet of itamaximal
vertex sets. This duality relationship can be- exploited in the following way. in a n-ary system, the C-
faces and the (n-&)-fuees are duals and this is reBectAd in the fact that their corresponding incidence sets
are "inversions " of each other. For k=O for example, we can invert the vertices, mapping them into
the incidence sets for the dual n-faces, by the following procedure: For each n-face label L, we l is t the
set of vertices u, for which the label L ie a member of v, 'a incidence set. This results in the maximal
n-face set for L or dual incidence set for "vertex" E.

For example, in table n, L appears in the incidence seta for vertices ttz,~6,U7,~Io, and ull, and
hence the dual incidence set for L is ~'={u2,us,u~,ulo,uII}, whicb is the maximal set of vertices
whose intersection is {L}.

The practical consequences of all of this is that once the ui"s have been determined, the remaining
incidence seta can be gcnerated from either the u,"s or from the dual incidence seta for the n-faces. In
table 11, for example, we can generate the incidence calculus by taking combinations of the face vertex
sets. Since there are much fewer combinations in 6 faces than in 11 vertices, the computation required
wil l be much less, and in general, since the number of phase fields is much fewer than the number of
vertices, i t will be less expensive computationally to generate the incidence calculus from the n-faces.
But the n-faces can be generated from the u,"s by inverting them, so in fact we can start with either the
vertex incidence sets or the n-face incidence eets. This combined with the method we have discovered
for reducing the number of combinations which must be searched is the basis for a practical algorithm
lor generating the incidence calculus for phaae diagrams.



-*
Weight Percent Tantalum

0 2 0 3 0 4 0 50 60 70 80 90 95

2800-

v 2 4 7

L / / t l

Figure 6. The nickel-tantalum system taken from [E?].The vertices are annotated by u,. i =1, 2, . . . , 37,
and provide the vertex incidence sets from which the remaining topological relationships may be calculated. I t s
incidence calculus is given m table 111.
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A more complex binary, the nickel-tantalum system, taken from 1121, and with the vertices labeled
vi, i=1,2 - - ,37 is graphically depicted in figure 6. The incidence calculus is given in table 111, and in
fact, since the number of phase fields is 26 and the number of vertices is 37, was calculated by inverting
the vertices, calculating the dual, and listing the dual maximal vertex sets as the originally desired
incidence sets.

In order for distinct i-faces to map to distinct i-face' incidence sets, the incidence calculus
requires that the i-faced be incident upon distinct sets of vertices This is not strictly true for all f-
equilibria. For example, in a binary isomorphous system, i.e., complete solubility at all compositions as
in the binary subsystem A-B in the ternary of figure 8, the solidus and liquidus boundaries as well as the
L +a phase field are all incident on the same vertices, namely u; = {-Componenl l,a,L +a,L } and
w; = {-Cornponcn~,a,L+a,L}. As a result, their join, u l t v 2 is not unique, but consists of both the
solidus and liquidus boundaries. The incidence calculus reflecta this by producing for ulfu2,
v;nu; = {a,L +a,L }, which is correct topologically but unexpected. That it is correct topologically
may be seen by interchanging the solidus and liquidus boundaries, i.e., changing jus t metric attributes,
and noting that w; and w; remain the same. This incidence set must be interpreted as modeling all
three, namely, the solidus and liquidus boundaries and the L +a phase field separating them, since the
intersection of the two (identical) boundary incidence sets is again the same boundary incidence set. In
table V, containing the incidence calculus for the ternary of figure 8, this has happened to edge 31. In
general, this wil l happen in a n-ary phase diagram when two (n-I)-faces are incident on the eame ver-
tices, i.e., are "parallel ".

When this happens, it may be detected algorithmically, by applying an identity relating the
number of vertices u in the essociated intersection, the number of elements p in the resulting interseo
tion value and the dimension n, Le., if u=n, then w+p = n+2. For example, in a binary
system(n=2), an edge is incident on two vertices(w=2), and separatea two phase fields(p=2), and
hence 2+2 = 2+2. For the incidence set {a,L +a,L } this does not hold since p =3.

For ternary diagrams, two incidence sets may have to be mutually interpreted. For example, the
three phase region L +a+P of figure 8 and two of this regions faces have mutually identical incidences.
The algorithm we have described generates the incidence seta {L +a,a+@,L+a+P} and
{L+B,a+/3,L+a+@}, but these must be interpreted as the volume {L+a+p}, and the two faces
{L +a,L +~+/3}and {L +P,L +a+/3}. We have not worked all the rules, but believe that all such casea
are amenable to algorithmic interpretation.

The problem of non-unique incidence seta may also be solved by introducing "pseudo" vertices.
For example, the melting point vertex of an isomorphous system may be replaced by two vertices, both
at the same metric coordinates, but incident on distinct sets of phase fields.

'ertic

TABLE ID:Nickel-'
Ilndexl Vertex Set

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
I 7
18
l Q

I I

rntalum Lncidence Calculuo
Incidence Set

{Ni+L,Ni+Ni3 Ta,L +Ni3 Ta,L }
{Ni+L,Ni,-Nickel,L }

{Ni+Ni3Ta,Ni+Ni8 Ta ,Ni, Ta,NieTa +Ni3Ta }
{L +Ni3Ta ,Ni3Ta +L ,Ni3Ta ,L }

(Ni3Ta+L,Ni 2To+L,Ni 3Ta+Ni 2Ta,Ni 2Ta}
{NiZTa +L ,L +NiTa ,Ni2Ta +NiTa ,L }

{L+NiTa ,L +NiTa2,NiTa ,NiTa +NiTa 2}
{L +NiTa 21L +Ta,NiTa 2,NiTa 2+ Ta }

{L + To, Ta ,-Tantalum,L }
{Ni+L,Ni+Ni3To,Ni }

{Ni+Ni 3Ta ,L +Ni3Ta,Ni 3Ta}
(Ni+Ni3To,Ni+NigTa lNi}

{Ni+Ni3 Ta ,Nie Ta +Ni3Ta ,Ni3Ta }
{Ni 3Ta +L ,Ni2Ta +L ,L}

{Ni3Ta+L ,Ni3Ta,Ni 3Ta+Ni 2Ta}
{Ni2Ta +L,Ni 2Ta ,Ni2Ta+NiTa}

{L +NiTa,L+NiTa 2,L}
{L +NiTa ,Ni, Ta +NiTa,NiTa }

{L +NiTa 2,L +Ta ,L}



Algebraic Representation of Phase Diagram - 13 -

TABLE E?:Nickel -' antalum Incidence Caleuluo
c- '

K

'erticet

--
ride,

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

-

-

5

32
33
34
35
36
37

-

~

{L +NiTa,, NiTa +NiTa2,NiTa2}-_
- {L +To, NiTa 2+ To,-To }

{Ni+Ni,Ta ,Ni,Ta,-Banc}
{Ni+Ni8Ta,Ni,-Base}

{Ni 8Ta ,Ni*Ta +Ni 3Ta ,-Bosc)
{Ni 8Ta +Ni3Ta,Ni 3Ta ,-Baac}
{Ni3Ta ,Ni3Ta +Ni2Ta ,-Base}
{Ni 3Ta +Ni2Ta,Ni2Ta,-Bose}
{Ni2Ta ,Ni2Ta +NiTa,-Base}
{Ni 2Ta +NiTa ,NiTa ,-Base}
{NiTa ,NiTa +NiTa2,-Bosc}
{NiTa +MiTa2,NiTa2,-Bosc}
{NiTq&Ta,+ To ,-Bane}
{Ni?a&Ta ,-Bane, To }

{Ni;-biase,-Nickel)
{-BUM,Ta,-Tantalum}

{-Nickel,- Top,L }

{Ni+61,JVi+Ni3Ta }
{M+L,Ni}

{Ni+Nib Za,L +Nia To }
{Ni+Ni&&,Ni+NieTa }

{Ni+Ni,Ta,NieTa +Ni 3Ta}
{Ni+NiaTa ,Nit To }

{Ni+Nis&x,Ni}
{L +NiaTa,NitTa}

{-T~r@&m,-TOP,L }

{Mil+L ,L }

{L +Ni,Ta ,L }

{L +NiTa,Ni 2Ta+NiTa}
{L +NiTa ,NiTa }

{L +NiTa ,L}
(L+NiTa,,L+Ta}

{L +NiTa,,NiTa +NiTa 2}

{L + Ta,L }
{Ni+Ni To ,Nie To }

{Ni+Ni 8Ta ,Ni)
{Ni+Ni 8Ta ,-But}

(Ni8Ta ,NiBTa +Ni,Ta}
{Ni 8Ta ,-Bosr}

{NieTa +Ni,Ta ,Ni,Ta}
{Ni 8Ta +Ni3Ta ,-Base}

{Ni 3Ta,Ni 3Ta +Ni 2Ta}
{Ni 3Ta ,-Bode}
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TABLE lII:Nickel -'
Vertex Set

Edges

GLB

--
rider
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1

-

-

-
-

1

-

sntalum Incfdence Cslculur
Incidence Set

{Ni3 Ta +NilTa,Ni2 Ta }
{Ni3T.a +Ni 2Ta ,-Baac}
{NilTa,Ni2Ta +NiTa }

{Ni2Ta ,-Baw}
{Ni2 Ta +NiTa ,NiTa }
{Ni2Ta +NiTa ,-Base}
{NiTa ,NiTa +NiTa2}

{NiTa ,-Baec}
{NiTa -+NiTa 2,NiTa 2}

{NiTa +NiTa 2,-Bwe}
{NiTa 2, NiTa 2+ Ta }

{NiTa -Bw}
{NiTa2+ Ta,-Baec}
{NiTa 2+ Ta,To }

{Ni,-Baac}

{-€jaw,To }
{ Ta ,-Tantalum)

{-Tantdum,L }

{Ni+L}

{Ni,-Niektc)

{-Nickel, L }

{-Top,L }

{Ni+NisTa }
{L+Ni,Ta}
{Ni Ta +L }
{Ni2Ta +L }
(L+NiTa}
{L +NiTa2}

{L+Ta}
{Ni+Ni, To }

{Ni8Ta }
{Ni 8Ta +Ni 3Ta }

{NiaTa}
{Ni3Ta+Ni 2Ta}

{Ni2Ta }
{Ni2Ta +NiTa}

{NiTa }
{NiTa +NiTa 2}

{NiTa 2}

{NiTa 2+ Ta }
{Ni1
(To 1. -
{L}
{I

Ni+L ,Ni+Ni,Ta,L +Ni3Ta,Ni,Ta+L lNi2Ta+L
L+NiTa,L +NiTa,,L +Ta,Ni+Ni 8Ta,Ni 8Ta,
Ni8Ta +Ni,Ta ,Ni3Ta ,Ni,Ta +Ni2Ta ,Ni2Ta,

Ni2Ta +NiTa ,NiTa ,NiTa +NiTa2,NiTa2,
NiTa2+ Ta,Ni ,-Baae,Ta ,-Niekc&-Tantdum,-Top,L }

TABLEIII
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In order to suggest ways in which the incidence calculus may be used to model not only the tope
logical relationships in phase equilibria, but also thermodynamic relationships, we make the following
informal definitions:

/-equilibria' the incidence set of the k-jace denoting j-equilibria

# (fequilibria' ) E number of phase field labels in /-equilibria'.

#P(j-cquilibriu' ) E number of distinct phase labels in j-equilibriu'.

#P+~ -equilibrium,'J -equilib~u~~ number of ph& which appear in going from j-equilibrium,

#P-(/-cquilibrium~J -equifibriuq') E number of phases which disappear in going from

# V(f-equilibria) j , the degrees d freedom, or variance for j-equilibria

F(j-equilibria) zs the k-jacc denoting j-equilibria Note that k 2 j.
I(fequi1ibria') E the dual incidence set for j-equilibria' .
#D (j-equilibtia' ) 3 k, the topological dimension of the k-jaee denoting j-equilibria'.

Note that #V(j-equilibria)S#D(j -equiiibria'), e.g., for a binary eutectic e , #V(e)=O and
#D (e ')=l.All operations except # V are directly computable from the given incidence net. While
# V is not, it may be calculated by applying Cibb'e phsse rule.

Let C=n be the number of componenta in a n-ary isebaric temperature -composition phase
diagram. Then a number of qualitative principles may be expressed in terms of the incidence calculus.
For example, we give informal translations of the following:

(1) Gibbs Phax && [1,2,13,15]: Cibbs phase rule allows the calculation of # V by the following:

to j-equilibriump

j-equilibrium, to j-equilibriuq.

# Vu-equilibria) = C-#Pu-equili6ria)+l

(2) Boundarv [14]: A phase region j-eguilibrium is bounded by phase regions g-equilibria, g </ ,
whoee number of phases is constrained by:

#P(9-equilibrium' ) = #P(j-equilibrium' )*( C-#D(MEET(9-equilibrium' J-equilibrium' ))

The phase fields i.e., n-jaecs of a n-ary diagram, rn 8 special cme, gain or lcme at most one phase
in passing through a (n-1)-jace:

If(n-1)-equilibria' {n-cquilibrium,,n -cquilibriu-} then

#P(n-equilibrium,') = #P(n -cquilibriu~')f1

(3) Contact [IS] or & Q( AdioininP&Renions 121: This rule constrains the dimen-
sionality of the meet of two j-equilibria in terms of the number of phaaes added and deleted in
passing through the meet.

F~ -cquilibria,lj -equilibri~)= A-jaw if and only if

k =n -#P-~-cguilibrium,'J -equilibriu~~#P+~ -cqui l ibr iu~ 'J -equi l ibr iu~~~O

We have been very informal here. To be complete, a discu ion of how phase field labels are to be
encoded, including external face labels, and precisely how the operations defined above are to be com-
puted must be given.

Hillert, in 1131, surveys general topological principles underlying phase diagrams and related
methods for giving a qualitative geometric interpretation to thermodynamic equilibria. We suggest that
these and other qualitative principles, expressed in terms of operations on incidence sets, provide a com-
putational basis for modeling phase equilibria topology.
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6. THE INHERENT SUBSYSTEM INCIDENCE REWTIONS IN A MULTICOM -
PONENT P H A S E DIAGRAM DATA BASE

We envision a relational data base[l6,17] in which the individual /-equilibria for a given fixed
phase diagram become the objects for which various attribute values are stored. Included BS attributes
are the incidence set, i ts location in temperaturecomposition space(coordinatea for vertices, parametric
functions for edges and surfaces etc.), and other information specific to that $-cquifibria. This organiza -
tion reflects our belief that the topological'information, i.e., the incidences between the /-equilibria, must
not only be explicitly represented in a data base, but in fact provide the natural structure upon which to
"hangn the metric attributes of individual /-equilibria Such a representation links the ability of the
computer to perform qualitative reasoning with quantitative calculations, and constitutes the within
diagram or "intra-diagram" data base. In the preceding sections, we have described what we call the
jntrr-diagram incidence calculus, A collection of diagrams represented in this manner potentially consti -
tutes a between diagram or "inter-diagram" data base. Questions of type 5 are then a matter of under-
standing the natural relationships that exist in this inter-diagram data base. We give a brief overview

Let [a1,a2, - - ,a,,] denote a fixed ordering, called a SomDonent seauence , of the n components
a1,a2, - ,a,, making up a n-ary phase diagram. Denote by [a"]?, O < i 5 jI n , the comDatible
gonent seauence & consisting of the collection of ordered component sequencea in which the n com-
ponents a1,a2, a * * ,a,, are taken Os;, i+l,* e * ,j-1, j l n at a time. Further, denote by Pi[q,] the
collection of phase diagrams, each member of which c o ~ p o n d sto a unique component sequence in

[a,,]:. Note that the collection Pj[o,] contains k( ) distinct phase diagrams. In case

i=j=n, [a,]:, abbreviated to [a,,], there is a single n-ary phase diagram, again abbreviated to Pia,,],
and even more briefly as P, corresponding to the single component sequence [a1,u2, - * ,a,,1.

ram relationships.

k=I

More specifically, let [e I,c 2, * l ,emu] denote a fixed component sequence for the m a elements of
potential interest in a phase diagram data base, and let U[e mu] denote the max-ary "universal " phase
diagram on these m u components. Then all phase diagrams P and Q of potential interest may be
thought of as subsystems of U, or to be more precise, members of Worn*' [cl,c2, * * * ,e-).

I f [a,,] and Ibm) are two component sequences, both members of [emu]$u, we say [a,, J is an
pbcomRonent seauence of [b,] i f and only if for n <m, and for all i,OLi<n, there is a
j, 0 5 j5m,i5 j such that a, =b, , and denote this relationship by [a,, ]<<[b, 1. Note that for com-
ponent sequence [a,], the corresponding phase diagram P[a,,], haa n, (n-l)-ary subcomponent
sequences, each of which correspond ta a phase diagram in the collection Pt-i*[a,]. Further, i f P[a,J
and Q (b,] are pa ry and q-ary phase diagrams respectively, for which [a,] is a subcomponent eequence
of [b, ] we define the phase diagram pubsvstem relation << which may exist between them as:

la,l<<P,IIIb, l < < l ~ m u l

P [a, J << Q [b, ] i f and only if [a, ]<<[e

Hence, for all phase diagrams P of potential interest, P <<U. However, given two arbitrary sub
systems P and Q of U, i f both contain components not contained in the other, then neither P << Q
or Q <<P, and hence the relation << induces a partial order on the elements of,om*' [emrx], i.e., the
subsystems of U. In analogy with the equilibria join 7 and meet 1 for A-jaccs, we define the subsystem
join 11 and meet 11 of any two subsystems P and Q of the universal phase diagram U:
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The subsystem relation << along with the join tt and meet 11 operations define a subsystem

incidence lattice in which the universal system U:[e,,,,&U is the LuB and the Gary system
V," [emax]S)[e,,,,x] is the GLB. It is this mathematical lattice of phase diagrams that we have denoted
by Uo

max and note that its structure models the natural relationships which exist bet-s-.:cn the
various subsystem phase diagrams of the universal phase diagram Ij[cI ,c2, l * ,emu]. Hence, the
intrinsic incidence relationships inherent in the inter-diagram data base Ijo

mr [e,,) are modeled by the
same structures used in modeling the f-equilibria intra-diagram data base. The n-ary transition equili-
bria information is in the interior of the n-face, while the (n -l)-laces, (n-2)-jacer, * * ,O-faecs con-
tain the (n-l)-ary, (n-2).ary, ... , Gary subsystem equilibria respectively. This induces an inter-diagram
incidence lattice defined on the collection of individual intra-diagram incidence lattices. This becomes
apparent when we consider the ternary prism shell P[&B,C].

To pursue this example, refer back to the ternary prism of figure 2. Here the universal diagram
Uf [A ,B,C] is P [A ,B,C], and the subsystem lattice V," [A ,B,C] consists of P t [A ,B,C]sLUB, its
subsystems P; [A ,B,Cl={PIA,BJ, PlB,cl, PIC,AI), ita subsubaystems
P,' [A ,B,C]={PIAI, PIBI, PfCI) and P; [A ,B,C]=LUB. Hence
P [A ,B 1 P [B,C] = P[A ,B ,C] and P [A ,B] 11P[B,C] = P [B] for example. It is this incidence
lattice that the incidence calculus TpIA ,B,CI given in table 1 models since in fact none of the faces con-
tain interior equilibria. This is jus t the relationship between the ternary of figure 1 and the correspond -
ing barycentric coordinate system shell of figure 2. Each of the three subsytem faces contribute a unique
label to that subsystem's label set, BO that the three binary incidence calculii may be easily distinguished
within the ternary incidence calculus. We call the incidence seta corresponding to this subsystem
incidence lattice, the gubsvstem 1-e SalculUa,

These subsystem relations are of course well known, but we have elaborated them here because we
see them as an important consideration in the architectual design of a multi nent phase diagram
data b e . While the intra-diagram incidence lattice varies from ram, the subsystem
inter-diagram incidence lattice is hed and provides a framework hang shared phose
equilibria information in a consistent manner.

The incidence calculus for this framework is relatively straight forward to calculate for an arbi-
trary number of components n. For example, figure 7 is the four component, i.e., quaternary, analogue
of figure 2 and the calculated subsystem incidence calculus for it is given in table IV. Note that the 4-
jace is really the LUB, but for consistency we have included the (mdundant) empty set {} corresponding
to the interior complex of i-faces, of which there is only the single &jaec a.

In general, for a n-ary phase diagram within a n component barycentric coordinate system with n-
1 axes and one additional linear is, e.g., temperature, the number of i-facer, for i=O,l,- - * ,n is
easily calculated. Let F," be the set OP i-Jocco of dimension i,and denote by #(S) the number of el+
ments in the set S. Then the number of i-faces of dimension i is given by:

i=O (vertices)

i=n (interior and exterior)
+ (1) O < i <n

For example, the number of (n-l)-joecs of a n-ary system is obtained by setting i to n-I, and is
given by 2( ) + = 2+n, which corresponds to the n subsystem faces and the two truncated faces
of the kmperature scale. The term (1) is the number of (i-ary)-subsystems inFr, denoted by Si", while
the term 2(,:,) is the number of i-/aces created by the upper and lower temperature range trun-
cations.

Given the existence of the incidences between the Subsystems of a multicomponent phase diagram
data base, as outlined above, we next briefly outline what is meant by algorithmically computing the
meet and join of two incidence lattices corresponding to elements of Uc' Ic mu].

7. AN OPERATIONAL CALCULUS FOR A MULTICOMPONENT PHASE DIAGRAM
DATA BASE

In particular we are interested in facilitating a "bootstrapping " process whereby the lower order
systems in conjunction with the application of the generic rules of thermodynamics, as well as their
application to specific systems, and including laboratory data, are used to build a multicomponent phase



Quaternary

Unary

A B C D

Figure 7. A schematic of a quaternary "coordinate shell" and its decompition into laces of decress -
ing dimension. Except lor the truncated temperature brse urd liquidus faces (not shown), these fa-
correspond to the subsystems of decreming dimenrion from which it WM compcaed. Its incidence cal-
culus is given in table IV.
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@Faces
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4-Fsca

GLB

LUB

Index

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
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1
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3
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5
6
7
8
9
10
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12
13
14
1
2
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5
6
1
1
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Quaternary A-B-C-D S
Vertex Set

bmymtem Incidence Calculue
Incidence Set

{-Basc,a,A-B-D,A-B-C,C-A-D}
{-Bodc,a, A-B-D,A-B-C,B-C-D}
{-Btwc,a,A-B-C, C-A-D,B-C-D}
{-Bode,Q, A-B-D,C-A-D,BC-D}
{a,- Top,A-B-D,A- B- C, C-A-D}
{a,- Top,A-B-D,A-B-C,B-C-D)
{a,-Top, A-B-C, C-A-D,BC-D}
{a,- Top, A-B-D,C-A-D,B-C-D}

{-BoIc,~,A-B-D,A-B-C)
{-Baue,a,A-B-C, C-A-D}
{-Bauc,a,A-B-D, C-A-D}
{a,A-B-D,A-B-C,C-A-D}
{-Baur,a,A -BC,B-C-D}
{-Bauc,a,A-BD, B-C-D}

{-Baue,a, C-A-D,B-C-D}
{a,A-B-C,CAD,B-C-D}
{Q,A-B-D, C-A-D,B-e-D}
{Q,-TO~,A-B-D,A-B-Q
{a,- Top,A-B-C, CAD}
{a,- Top,A-B-D,C-A-D}
{Q, -Top,A-B-C,B-C-D}
{Q, -Top, A-B-D,B-C-D}
{a,-Top,C-A-D,B-C-D)

{a,A-B-D,A-B-C)
{a,A-B-C,C-A-D}
{Q,A-B-D, C-A-D}
{a,A-B-C,B-C-D}
{a,A-B-D,B-C-D}
{Q,C-A-D,B-C-D}
{-Bodc,a,A-&C)
{-Bodc,a, A - BD}
{-Bodc,a, CA-D}
{-Bodt,a,BGD)
{a,- Top,A-&C)
{a,-Top,A-SD}
{a,- Top, C-A-D}
{Q,- Top,B-C-D}

{a,A-B-D}
{a,C-A-D}
{a,B-C-D}
{-Bodc,a}
{a,-Top}

{a,A-B-D,A-BC,B-C-D}

(a9A -B C)

a

{-Bade,A -B-C,a, - Top,A -B-
D, C-A-D,B-C-D}

Subsystem

Unary A

Unary B

Unary C
Unary D

Binary A-B
Binary A-C
Binary A-D
Binary B C
Binary E D
Binary CD

Ternary A-EC
Ternary A-ED
Ternary GA-D
Ternary B C D

Quaternary

TABLE IV
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diagram data base. The role of the subsystem incidence calculus is that of an operational representation,
amenable to computer manipulation, and acts as a complement to thermodynamic modeling by provid-
ing the supemtructure upon which to hang the metric attributes such modeling generates.

For each element P [an] of UomU [emu] there is an intra-diagram incidence calculus This
collection of incidence calculi, corresponding to the individual calculi of elements in UOmu [emax], we call

the jnter-diagram incidence calrulug , and denote it by D"O"" I
C

The abstract p
the elements of Uo

mu [ e,4may be expressed operationally in terms of their individusl incidence calculi
88

<< era,] if and Only if TP[ar] C T TQIb,) 9

where Cr i s a suitably defined sub-lattice relationship defined on the incidence calculi. For example,
given the incidence wts for T~IA,B ,cI , (which strictly speaking is a subsystem incidence calculus, but

), we can readily identify the subcalculus for Tpl A,~las consisting of those
the label A-B, e.g., Tp[A,B] {uET~~A,~,c] IA - BEu}.Thee are

and e;,. However, in order for the set tbeoretic operations modeling
<, t and 4 to work, we must remove dl labels A-B, and rep1 labels of the form C-A with A and A-B
with B. The empty set {)=GLB and the eet containing dl the resulting labels, the LUB, must de0 be
added.

The computation associ with the meet 11 is motivated by wanting to find the incidence csl-

Given P [a, 1, Q [b, ] and R ICe ] such that

culus for the subsystem of hig dimension eommoa *$a

PI%]11W,I = R[GI
then clearly we want

TPja,] n T TQ[b,] TR[C,]t

where again nr Is a suitably defined "intersection " on incidence calculi. Again, using T~IA,B,cI aa an
example, if we are given P [A ,B]11Q[B,C] -R [B], then we are interested in defining nr M) that
TplA , B p r TQ[B,c~= TRIS]. This will be true if we define! it a8

TP[A,BI nr TQ(B.Cj = {rlrETPIA.B] and 8ETQ18,C])

suitably relabeled with the LUB and GLB added.
The much more interesting bility is that of being given the incidence calculi for the n (n-1)

ary systems of Pz-i' [a,,], with tbe objective of "bootstrapping " up to the minimally induced incidence
calculus containing the given incidence calculi aa subcslculi. Let the n elemenb dP::' [a,,] be denoted
by P, [a,,], and their corresponding incidence calculi by Ti[o,], i=l,n. By definition
P,[a,,]ttPj[a,,] = P(a,,], lli,jsn, i#j,and we are i n t e d in "computing " Tpl.,~. Again we
are interested in defining a "union" operation Ur such that

TI[%!]UT TlIs, IUr * * Ur T"Is1= TPI,,]

As an example, figure 8 consists of a generic ternary PIA ,B,C] made up of an isomorphous sub-
sytem P [A 3 1 , and two eutectic subsystems P [B,C] and P [C,A ].Hence.,

p [A ,B $1 = p [A ,BlttP IB tc1rtp IC,A I
and we want to find a ~ i n ~ ~ ~ ~ l yinduced incideaee calculus TPIA,B.CIm that

TP(A,B,C] e TPjA.Bj U T TP[B,C] U T TPIC.AI

In this case the two eukctica must extend to form an "eutectic trough", but no internal vertex
(ternary eutectic) is required, aa say would be the case if all three binary subsytems were of the eutectic
type. Hence only sharing of unary subsystem vertices and reinterpreting &face labels (phase fields) as
3-jace labels (phase volumes) must be done. One of (in general there wil l be more than one) the resulting
minimally induced incidence calculi, Tp[A ,B,cj, (which includea an hypothesized three phase field
L +a+@, is depicted in table V.



Solidus
Surface

SOlVUS
Surface

/ s

\
v,

Figure 0. A schematic of a ternary made &om two eutectic and one isomorphous system. Its mcidence
calculus is given m table V, and is potentially calmlatable from the three incidence calculi of the subsystems
composing it.
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Faces
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Special +
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1

1
1
2

TABLE V

To make sure there is no misunderstanding in what we are outlining, it should be emphasized that
in suggesting a method for bypothesizing a minimal topology we are in no way modeling or predicting
a-priori what the actual higher dimensional phase diagram topology is, but rather only providing a for-
malism for enumerating the simplest poesibile topological extrapolations consistent with the subsystem
topologies. It is minimal in the sense that it is a subset of the actual topology, since for example, the
existence of a ternary miscibility gap or ternary compound can not be known from just the binary sub
sytems. Additionally, qualitative thermodynamic NI~s,e x p d in terms of incidence calculus transfor -
mations, potentially provide a formal way of decreasing the number of pomible topologies even further.

8. FUTURE RESEARCH
In practice, the preceding idem must be tempered by the fact that the number of systems we are

interested in far exceeds both available laboratory equilibrium data and current thermodynamic model-
ing techniques. Current empbasis of the latter is on computing what we have called /-equilibria metric
attributes. As a supplement to modeling these numeric attributes, we have presented a method of
representing the qualitative topological relationships, and bave suggested the possibility for qualitative
modeling of!-equilibria

?These must be interpreted as a volume {L +a+/?}, and two faces, {L +a+B,L +a} and
{L +a+B,L +@}.See end of Section 5 for an explanation.
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The incidence calculus providea a method for characterizing individual phase diagram topology. In
itself however, it does not provide a method for characterizing the topology for the entire class of, my
binary, phase diagrams. This is done, for example, in 1181, where the quantitative modeling of what we
have called the metric attributes is worked out as a mathematical topology. in the previous section we
have suggested the possibility of algorithmically finding the minimally induced calculus given all subsye-
tem calculi through the application of qualitative thermodynamic rules.These rules, however, must be
represented in a manner amenable to computer manipulation. Thermodynamic modeling seems a for-
midable problem without some method for taking advantage of the qualitative principles given in, for
example[l3,15], and translated into transformations on incidence calculi or some similiar purely qualita-
tive medium. To this end, we outline one technique future research might take. We express these ideas
in terms of the goal of a characterization of binary phase diagrams.

As with the incidence lattice, we treat the topological elements and their incidences. A (binary)
phase diagram is then a graph consisting of nodes and connecting edges. This subset of topological infor-
mation we call the &gg and as a graph its dual[l9] is well defined, eomthing we call thea
Bdiacency& As noted in a previous section, the incidence calculus for this dud is a by-product of
computing the diagram incidence calculus. Alternatively, the phase adjacency graph may be created
directly by assigning a labeled node to each phase field of the diagram, and then connecting those nodes
by directed edges whose corresponding phase fields are contiguous in the phase diagram. This repreaen-
tation of phase diagram topology WBB explpred by the Soviet Academician N.S. Kurnakov sometime
prior to 1961. His ideas were utilized for computer entry of binary diagrams BB described in 1201, where
the dual is called a physicechemical graph. In 1151, they are called topological schemes and are VI+
tematically explored using combinatorial enumerations of phasea and the contact rule. Other applica-
tions of the phase (adjacency) graph include that of providing a means for eEciently searching acroB8 a
collection of systems for an occurrence of a j-equilibrium in which only the phasea and their adjacenciea
are relevant, i.e., a series of subgraph matches.

We take the view that the three fundamental thermodynamic events represented in phase
diagrams aa a decreasing function of temperature are the appearance or disappearance of a phase, and

-and-the reordering of existing phases, called a formation eauilibria, de_comDosltlon
sauilibri4 respectively in (21). In the binary case the formation and decompition equilibria correspond
to the peritectic and eutectic invariant equilibria reactions mpectively. A (binary) phase diagram
"composed" of several such invariant equilibria, or "reactions", say formation and decompoeition equili-
bria for example, will contain three reaction "interaction " types: peritectioperitectic, eutectioeutectic
and peritectic -eutectic. Each such interaction may have several "eolutions", i.e., side by side, one above
the other, etc. We define theinvarisnteauilibtia c w problem as that of determining the NI~S

concerned with how two invariant equilibria, each expressed aa a echematic in the form of an
guilibria , link up. Knowing theae NI~Swould make poesible the algorithmic comple-
tion of the topology of an hypothesized phase diagram from a set of hypothesized invariant equilibria
Gibbs phase rule, the boundary rule, the contact rule and other qualitative thermodynamic constraints
clearly limit the possible phase orderings, and this, coupled with the algorithm described in this paper,
would allow the calculation of the remaining intermediate dimensioned equilibria. We are suggesting
that such rules, explicitly stored in the computer m graph/incidence calculus transformation rules and
used in conjunction with thermodynamic modeling, would provide a more complete representation of
thermodynamic knowledge then is currently being used in modeling efforts.

A potentially useful technique for dealing with thermodynamic rules concerned with transforma -
tions on phase adjacency graphs is that of treating these NIB M a generative grammar[22,23,24]. A
large literature exists explicitly dealing with grammars defined on graphs (See [25], for example.), as well
as computer algorithms for dealing with them.

. .

One of the underlying assumptions of such a generative grammar approach is that we are
interested in characterizing the topology of an infinite class of potential phase diagrams, only a finite
subset of which have actually oecurred in nature. This is analogous to what a grammarian doea when he
attempts to characterize English by a grammar: He hypothesizes an infinite set of potential utterances
to characterize, and not just the finite set of utterances that have actually occurred. Such a characteri -
zation may be approached simultaneously from two directions: From below with a too restrictive gram-

' mar, and from above with a grammar not restrictive enough. Higher order systems would require a more
generalized graph grammar formalism, based on for example, hypergraphs126).
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0. SUMMARY

W e have informally presented the idea of representing the topological decompoeition of a phase
diagram a,e~ a lattice in such a way 88 to make questions of a topological nature answerable via set
theoretic operations in a calculus modeling that lattice. Itspotential advantages are:

Entering for each invariant point, the phases which are incident on that point, or equivalently, for
each phase field, the invariant points in which that phase field participates, provides a single
unified method for entering and representing phase diagrem tepology with M arbitrary number of
components.

A majority of the topological elements making up a phase diagram, dong with their incidences,
may be calculated via the algorithm we have presented. The hlaefli identity, applied to the
totality of these elements, provides a method for insuring that a given set of u,"s describe a tope
logically consistent diagram.
For a n-ary system, (n-l)ary ~~~~ contain moet of the vertices. Hence knowing the
calculus for these n s tems provides maet Ct the information e u,% needed for the0-q
system, thus providi bootstrapping p d u r e " . We hwe mted the poeeibility d
developing a formal model of this p

The subsystem incidence calculus provides a natural architecture around wbieb to d&gn a mul-
ticomponent data base in which the lower order systems provide a dngle mmhtmt Llource of data
for the higher order systems.

by design considerations for a computerized phase diagram data base, a description d

le to computer implememtoljon.

the inter-diagram relations existing between phase diagrams was given in term which relate them in a
natural way to the intra-diagram equilibria topological relationships.

As an adjunct to quantitative themdynomic rn have speculated that discrete qualita -
tive topological models, based on incidence edculus tions and driven by generative graph
grammar models, might provide mew
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